Source code for orangecontrib.recommendation.optimizers.sgd_optimizers

import numpy as np
import copy

__all__ = ['SGD', 'Momentum', 'NesterovMomentum', 'AdaGrad', 'RMSProp',
           'AdaDelta', 'Adam', 'Adamax', 'create_opt']


def create_opt(opt2copy, learning_rate=None):
    opt = copy.copy(opt2copy)  # Shallow copy
    if learning_rate is not None:
        opt.learning_rate = learning_rate
    return opt


[docs]class SGD: """Stochastic Gradient Descent (SGD) updates Generates update expressions of the form: * ``param := param - learning_rate * gradient`` Args: learning_rate: float, optional The learning rate controlling the size of update steps """ def __init__(self, learning_rate=1.0): self.learning_rate = learning_rate self.name = 'Stochastic Gradient Descent'
[docs] def update(self, grads, params, indices=None): """SGD updates Args: grads: array List of gradient expressions params: array The variables to generate update expressions for indices: array, optional Indices in params to update """ if indices is None: indices = np.arange(len(params)) params[indices] -= self.learning_rate * grads
def __str__(self): return self.name
[docs]class Momentum: """Stochastic Gradient Descent (SGD) updates with momentum Generates update expressions of the form: * ``velocity := momentum * velocity - learning_rate * gradient`` * ``param := param + velocity`` Args: learning_rate: float The learning rate controlling the size of update steps momentum: float, optional The amount of momentum to apply. Higher momentum results in smoothing over more update steps. Defaults to 0.9. Notes: Higher momentum also results in larger update steps. To counter that, you can optionally scale your learning rate by `1 - momentum`. See Also: apply_momentum: Generic function applying momentum to updates nesterov_momentum: Nesterov's variant of SGD with momentum """ def __init__(self, learning_rate=1.0, momentum=0.9): self.learning_rate = learning_rate self.momentum = momentum self.velocity = None self.name = 'Momentum'
[docs] def update(self, grads, params, indices=None): """Momentum updates Args: grads: array List of gradient expressions params: array The variables to generate update expressions for indices: array Indices in params to update """ if indices is None: indices = np.arange(len(params)) if self.velocity is None: self.velocity = np.zeros(params.shape) self.velocity[indices] = \ self.momentum * self.velocity[indices] - self.learning_rate * grads params[indices] += self.velocity[indices]
def __str__(self): return self.name
[docs]class NesterovMomentum: """Stochastic Gradient Descent (SGD) updates with Nesterov momentum Generates update expressions of the form: * ``param_ahead := param + momentum * velocity`` * ``velocity := momentum * velocity - learning_rate * gradient_ahead`` * ``param := param + velocity`` In order to express the update to look as similar to vanilla SGD, this can be written as: * ``v_prev := velocity`` * ``velocity := momentum * velocity - learning_rate * gradient`` * ``param := -momentum * v_prev + (1 + momentum) * velocity`` Args: learning_rate : float The learning rate controlling the size of update steps momentum: float, optional The amount of momentum to apply. Higher momentum results in smoothing over more update steps. Defaults to 0.9. Notes: Higher momentum also results in larger update steps. To counter that, you can optionally scale your learning rate by `1 - momentum`. The classic formulation of Nesterov momentum (or Nesterov accelerated gradient) requires the gradient to be evaluated at the predicted next position in parameter space. Here, we use the formulation described at https://github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617, which allows the gradient to be evaluated at the current parameters. See Also: apply_nesterov_momentum: Function applying momentum to updates """ def __init__(self, learning_rate=1.0, momentum=0.9): self.learning_rate = learning_rate self.momentum = momentum self.velocity = None self.name = "Nesterov's Accelerated Momentum"
[docs] def update(self, grads, params, indices=None): """NAG updates Args: grads: array List of gradient expressions params: array The variables to generate update expressions for indices: array, optional Indices in params to update Returns updates: list of float Variables updated with the gradients """ if indices is None: indices = np.arange(len(params)) if self.velocity is None: self.velocity = np.zeros(params.shape) v_prev = self.velocity[indices] self.velocity[indices] = \ self.momentum * self.velocity[indices] - self.learning_rate * grads params[indices] += -self.momentum * v_prev + \ (1 + self.momentum) * self.velocity[indices]
def __str__(self): return self.name
[docs]class AdaGrad: """AdaGrad updates Scale learning rates by dividing with the square root of accumulated squared gradients. See [1]_ for further description. * ``param := param - learning_rate * gradient`` Args: learning_rate : float or symbolic scalar The learning rate controlling the size of update steps epsilon: float or symbolic scalar Small value added for numerical stability Notes: Using step size eta Adagrad calculates the learning rate for feature i at time step t as: .. math:: \\eta_{t,i} = \\frac{\\eta} {\\sqrt{\\sum^t_{t^\\prime} g^2_{t^\\prime,i}+\\epsilon}} g_{t,i} as such the learning rate is monotonically decreasing. Epsilon is not included in the typical formula, see [2]_. References: .. [1] Duchi, J., Hazan, E., & Singer, Y. (2011): Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 12:2121-2159. .. [2] Chris Dyer: Notes on AdaGrad. http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf """ def __init__(self, learning_rate=1.0, epsilon=1e-6): self.learning_rate = learning_rate self.epsilon = epsilon self.accu = None self.name = 'AdaGrad'
[docs] def update(self, grads, params, indices=None): """AdaGrad updates Args: grads: array List of gradient expressions params: array The variables to generate update expressions for indices: array, optional Indices in params to update """ if indices is None: indices = np.arange(len(params)) if self.accu is None: self.accu = np.zeros(params.shape) self.accu[indices] += grads ** 2 den = np.sqrt(self.accu[indices] + self.epsilon) params[indices] -= self.learning_rate * grads/den
def __str__(self): return self.name
[docs]class RMSProp: """RMSProp Scale learning rates by dividing with the moving average of the root mean squared (RMS) gradients. See [3]_ for further description. Args: learning_rate: float The learning rate controlling the size of update steps rho: float Gradient moving average decay factor epsilon: float Small value added for numerical stability Notes: `rho` should be between 0 and 1. A value of `rho` close to 1 will decay the moving average slowly and a value close to 0 will decay the moving average fast. Using the step size :math:`\\eta` and a decay factor :math:`\\rho` the learning rate :math:`\\eta_t` is calculated as: .. math:: r_t &= \\rho r_{t-1} + (1-\\rho)*g^2\\\\ \\eta_t &= \\frac{\\eta}{\\sqrt{r_t + \\epsilon}} References: .. [3] Tieleman, T. and Hinton, G. (2012): Neural Networks for Machine Learning, Lecture 6.5 - rmsprop. Coursera. http://www.youtube.com/watch?v=O3sxAc4hxZU (formula @5:20) """ def __init__(self, learning_rate=1.0, rho=0.9, epsilon=1e-6): self.learning_rate = learning_rate self.rho = rho self.epsilon = epsilon self.accu = None self.name = 'RMSProp'
[docs] def update(self, grads, params, indices=None): """RMSProp updates Args: grads: array List of gradient expressions params: array The variables to generate update expressions for indices: array, optional Indices in params to update """ if indices is None: indices = np.arange(len(params)) if self.accu is None: self.accu = np.zeros(params.shape) self.accu[indices] = \ self.rho * self.accu[indices] + (1 - self.rho) * grads ** 2 params[indices] -= self.learning_rate * grads /\ np.sqrt(self.accu[indices] + self.epsilon)
def __str__(self): return self.name
[docs]class AdaDelta: """AdaDelta Scale learning rates by a the ratio of accumulated gradients to accumulated step sizes, see [4]_ and notes for further description. Args: learning_rate: float The learning rate controlling the size of update steps rho: float Squared gradient moving average decay factor epsilon: float Small value added for numerical stability Notes: rho should be between 0 and 1. A value of rho close to 1 will decay the moving average slowly and a value close to 0 will decay the moving average fast. rho = 0.95 and epsilon=1e-6 are suggested in the paper and reported to work for multiple datasets (MNIST, speech). In the paper, no learning rate is considered (so learning_rate=1.0). Probably best to keep it at this value. epsilon is important for the very first update (so the numerator does not become 0). Using the step size eta and a decay factor rho the learning rate is calculated as: .. math:: r_t &= \\rho r_{t-1} + (1-\\rho)*g^2\\\\ \\eta_t &= \\eta \\frac{\\sqrt{s_{t-1} + \\epsilon}} {\sqrt{r_t + \epsilon}}\\\\ s_t &= \\rho s_{t-1} + (1-\\rho)*g^2 References: .. [4] Zeiler, M. D. (2012): ADADELTA: An Adaptive Learning Rate Method. arXiv Preprint arXiv:1212.5701. """ def __init__(self, learning_rate=1.0, rho=0.95, epsilon=1e-6): self.learning_rate = learning_rate self.rho = rho self.epsilon = epsilon self.accu = None self.delta_accu = None self.name = 'AdaDelta'
[docs] def update(self, grads, params, indices=None): """AdaDelta updates Args: grads: array List of gradient expressions params: array The variables to generate update expressions for indices: array, optional Indices in params to update """ if indices is None: indices = np.arange(len(params)) if self.accu is None or self.delta_accu is None: self.accu = np.zeros(params.shape) self.delta_accu = np.zeros(params.shape) self.accu[indices] = self.rho * self.accu[indices] + \ (1 - self.rho) * grads ** 2 # compute parameter update, using the 'old' delta_accu update = grads * np.sqrt(self.delta_accu[indices] + self.epsilon) / \ np.sqrt(self.accu[indices] + self.epsilon) params[indices] -= self.learning_rate * update # update delta_accu (as accu, but accumulating updates) delta_accu_new = \ self.rho * self.delta_accu[indices] + (1 - self.rho) * update ** 2 self.delta_accu[indices] = delta_accu_new return params
def __str__(self): return self.name
[docs]class Adam: """Adam Adam updates implemented as in [5]_. Args: learning_rate : float The learning rate controlling the size of update steps beta_1 : float Exponential decay rate for the first moment estimates. beta_2 : float Exponential decay rate for the second moment estimates. epsilon : float Constant for numerical stability. Notes: The paper [5]_ includes an additional hyperparameter lambda. This is only needed to prove convergence of the algorithm and has no practical use, it is therefore omitted here. References: .. [5] Kingma, Diederik, and Jimmy Ba (2014): Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980. """ def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8): self.learning_rate = learning_rate self.beta1 = beta1 self.beta2 = beta2 self.epsilon = epsilon self.t_prev = 0 self.m_prev = None self.v_prev = None self.name = 'Adam'
[docs] def update(self, grads, params, indices=None): """Adam updates Args: grads: array List of gradient expressions params: array The variables to generate update expressions for indices: array, optional Indices of parameters ('params') to update. If None (default), all parameters will be updated. Returns updates: list of float Variables updated with the gradients """ if indices is None: indices = np.arange(len(params)) if self.m_prev is None or self.v_prev is None: self.m_prev = np.zeros(params.shape) self.v_prev = np.zeros(params.shape) t = self.t_prev + 1 # To understand the coefficients plot this: # sqrt(1-0.999^x)*(1-0.9^x) # or this: # (1-0.999^x)*(1-0.9^x) # Computing bias-corrected first and second moment estimates to # counteract the effect of vt and mt been biased towards zero a_t = self.learning_rate * np.sqrt(1 - self.beta2 ** t) / \ (1 - self.beta1 ** t) self.m_prev[indices] = self.beta1 * self.m_prev[indices] + \ (1 - self.beta1) * grads self.v_prev[indices] = self.beta2 * self.v_prev[indices] + \ (1 - self.beta2) * grads ** 2 params[indices] -= a_t * self.m_prev[indices] / \ (np.sqrt(self.v_prev[indices]) + self.epsilon) self.t_prev = t
def __str__(self): return self.name
[docs]class Adamax: """Adamax Adamax updates implemented as in [6]_. This is a variant of of the Adam algorithm based on the infinity norm. Args: learning_rate : float The learning rate controlling the size of update steps beta_1 : float Exponential decay rate for the first moment estimates. beta_2 : float Exponential decay rate for the second moment estimates. epsilon : float Constant for numerical stability. References: .. [6] Kingma, Diederik, and Jimmy Ba (2014): Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980. """ def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8): self.learning_rate = learning_rate self.beta1 = beta1 self.beta2 = beta2 self.epsilon = epsilon self.t_prev = 0 self.m_prev = None self.u_prev = None self.name = 'Adamax'
[docs] def update(self, grads, params, indices=None): """Adamax updates Args: grads: array List of gradient expressions params: array The variables to generate update expressions for indices: array, optional Indices of parameters ('params') to update. If None (default), all parameters will be updated. Returns updates: list of float Variables updated with the gradients """ if indices is None: indices = np.arange(len(params)) if self.m_prev is None or self.u_prev is None: self.m_prev = np.zeros(params.shape) self.u_prev = np.zeros(params.shape) t = self.t_prev + 1 a_t = self.learning_rate/(1 - self.beta1**t) self.m_prev[indices] = self.beta1 * self.m_prev[indices] + \ (1 - self.beta1) * grads self.u_prev[indices] = np.maximum(self.beta2 * self.u_prev[indices], np.abs(grads)) params[indices] -= a_t * self.m_prev[indices] / \ (self.u_prev[indices] + self.epsilon) self.t_prev = t
def __str__(self): return self.name